SPELL - Nematode - Dataset Details
New Search

Dataset Listing

Show Expression Levels

Download Expression Data

About the Website

SPELL Version 2.0.3

Citation Szewczyk NJ, Udranszky IA, Kozak E, Sunga J, Kim SK, Jacobson LA, Conley CA. Delayed development and lifespan extension as features of metabolic lifestyle alteration in C. elegans under dietary restriction. J Exp Biol, 2006.
PubMed ID 17023606
Short Description Delayed development and lifespan extension as features of metabolic lifestyle alteration in C. elegans under dietary restriction.
GEO Record: GSE6057 Platform: GPL3411
Download gene-centric, log2 transformed data: WBPaper00028564.ce.mr.csv
# of Conditions 3
Full Description 1316625150_help Studies of the model organism Caenorhabditis elegans have almost exclusively utilized growth on a bacterial diet. Such culturing presents a challenge to automation of experimentation and introduces bacterial metabolism as a secondary concern in drug and environmental toxicology studies. Axenic cultivation of C. elegans can avoid these problems, yet past work suggests that axenic growth is unhealthy for C. elegans. Here we employ a chemically defined liquid medium to culture C. elegans and find development slows, fecundity declines, lifespan increases, lipid and protein stores decrease, and gene expression changes relative to that on a bacterial diet. These changes do not appear to be random pathologies associated with malnutrition, as there are no developmental delays associated with starvation, such as L1 or dauer diapause. Additionally, development and reproductive period are fixed percentages of lifespan regardless of diet, suggesting that these alterations are adaptive. We propose that C. elegans can exist as a healthy animal with at least two distinct adult life histories. One life history maximizes the intrinsic rate of population increase, the other maximizes the efficiency of exploitation of the carrying capacity of the environment. Microarray analysis reveals increased transcript levels of daf-16 and downstream targets and past experiments demonstrate that DAF-16 (FOXO) acting on downstream targets can influence all of the phenotypes we see altered in maintenance medium. Thus, life history alteration in response to diet may be modulated by DAF-16. Our observations introduce a powerful system for automation of experimentation on healthy C. elegans and for systematic analysis of the profound impact of diet on animal physiology.
Experimental Details:
Tags 1316625150_help
Method: microarray, Species: Caenorhabditis elegans, Topic: aging